Introduction

In the fall of 2007, about 73.7 million people were enrolled in American schools and colleges (table 1). About 4.6 million people were employed as elementary and secondary school teachers and as college faculty, in full-time equivalents (FTE). Other professional, administrative, and support staff at educational institutions totaled 5.2 million. All data for 2007 in this Introduction are projected. Some data for other years are projected or estimated as noted. In discussions of historical trends, different time periods and specific years are cited, depending on the timing of important changes as well as the availability of relevant data.

Elementary/Secondary Education

Enrollment

Enrollment in public elementary and secondary schools rose 26 percent between 1985 and 2007 (table 2). The fastest public school growth occurred in the elementary grades (prekindergarten through grade 8), where enrollment rose 28 percent over this period, from 27.0 million to 34.6 million. Part of the relatively fast growth in public elementary school enrollment resulted from the expansion of prekindergarten programs (table 36). Between 1985 and 2005, enrollment in prekindergarten increased by 585 percent, while enrollment in other elementary grades increased by 25 percent. Public secondary school enrollment declined 8 percent from 1985 to 1990, but then began increasing from 1990 to 2007, for a net increase of 21 percent (table 2). In more recent years, secondary school enrollment has been increasing more rapidly than elementary school enrollment. Between 2000 and 2007, public elementary school enrollment rose 3 percent compared to an increase of 11 percent for public secondary school enrollment. Private school enrollment grew more slowly than public school enrollment from 1985 to 2007, rising 11 percent, from 5.6 million to 6.2 million. As a result, the percentage of students enrolled in private schools declined from 12.4 percent in 1985 to 11.0 percent in 2007.

Since the enrollment rates of kindergarten, elementary, and secondary school-age children did not change substantially between 1985 and 2006 (table 7), increases in public and private elementary school enrollment have been driven primarily by increases in the number of children in this age group. The enrollment rate of prekindergarten age children (ages 3 and 4) rose between 1985 and 2006, which was reflected by a substantial increase in prekindergarten enrollment.

The National Center for Education Statistics (NCES) forecasts record levels of total elementary and secondary enrollment through at least 2016, reflecting expected increases in the school-age population. The projected fall 2007 public school enrollment is expected to be a new record, but new records are expected every year through 2016, the last year for which NCES enrollment projections have been developed (table 3). Public elementary school enrollment (prekindergarten through grade 8) is projected to increase by 10 percent between 2007 and 2016. Public secondary school enrollment (grades 9 through 12) is expected to be 2 percent higher in 2016 than in 2007.

Teachers

A projected 3.7 million full-time-equivalent (FTE) elementary and secondary school teachers were engaged in classroom instruction in the fall of 2007 (table 4). This number has risen 17 percent since 1997. The 2007 projected number of FTE teachers includes 3.2 million public school teachers and 0.5 million private school teachers.
The number of public school teachers has risen faster than the number of public school students over the past 10 years, resulting in declines in the pupil/teacher ratio (table 61). In the fall of 2007, there were a projected 15.4 public school pupils per teacher, compared with 16.8 public school pupils per teacher 10 years earlier.

The salaries of public school teachers lost purchasing power in the 1970s due to inflation, but increased at a greater rate than inflation in the 1980s, and since 1990–91 the salaries have generally maintained pace with inflation (table 75). The average salary for teachers in 2005–06 was $49,109, about 1 percent higher than in 1995–96, after adjustment for inflation.

Student Performance

Most of the student performance data in the Digest are drawn from the National Assessment of Educational Progress (NAEP). The NAEP assessments have been conducted using three basic designs: the national main NAEP, state NAEP, and long-term trend NAEP. The national main NAEP and state NAEP provide current information about student performance in a variety of subjects, while long-term trend NAEP provides information on performance over time in reading and mathematics only.

The main NAEP reports current information for the nation and specific geographic regions of the country. The assessment program includes students drawn from both public and private schools and reports results for student achievement at grades 4, 8, and 12. The main NAEP assessments follow the frameworks developed by the National Assessment Governing Board and use the latest advances in assessment methodology. Because the assessment items reflect curricula associated with specific grade levels, the main NAEP uses samples of students at those grade levels.

Since 1990, main NAEP assessments have also been conducted at the state level. Participating states receive assessment results that report on the performance of students in that state. In its content, the state assessment is identical to the assessment conducted nationally. However, because the national NAEP samples prior to 2002 were not designed to support the reporting of accurate and representative state-level results, separate representative samples of students were selected for each participating jurisdiction/state. From 1990 through 2001, the national sample was a subset of the combined sample of students assessed in each participating state along with an additional sample from the states that did not participate in the state assessment. Since 2002, a combined sample of public schools has been selected for both state and national NAEP, and the national NAEP sample has been augmented by a sample of private schools.

NAEP long-term trend assessments are designed to give information on the changes in the basic achievement of America’s youth since the early 1970s. They are administered nationally and report student performance at ages 9, 13, and 17 in reading and mathematics. Measuring long-term trends of student achievement requires the precise replication of past procedures. For example, students of specific ages are sampled in order to maintain consistency with the original sample design. Similarly, the long-term trend instrument does not evolve based on changes in curricula or in educational practices. The differences in procedures between the main NAEP and the long-term trend NAEP mean that their results cannot be compared directly.

Reading

Overall achievement scores on the NAEP long-term trend reading assessment for the country's 9-, 13-, and 17-year-old students are mixed. The average reading scores at ages 9 and 13 were higher in 2004 than in 1971 (table 112). The average score for 17-year-olds in 2004 was similar to that in 1971.

For Black 9-, 13-, and 17-year-olds, average reading scores in 2004 were higher than in 1971. At age 9, Black students scored higher on average in 2004 than in any previous administration year. For Blacks ages 13 and 17, scores increased between 1971 and 2004 (table 112). For White students, the average scores for 9- and 13-year-olds were also higher in 2004 than in 1971. Separate data for Hispanics were
not gathered in 1971, but as with the other racial/ethnic groups, the average reading score for Hispanic students at age 9 was higher in 2004 than in any other assessment year (the first reading assessment with Hispanics separately identified was conducted in 1975). The average score for Hispanic students at age 13 shows an increase between 1975 and 2004. The scores for 17-year-old Hispanic students also increased between 1975 and 2004, but no measurable changes were seen between 1999 and 2004.

The 2007 main NAEP reading assessment of states found that reading proficiency varied among public school fourth-graders in participating jurisdictions (the 50 states, the Department of Defense overseas and domestic schools, and the District of Columbia) (table 116). The U.S. average score was 220. The scores for the participating jurisdictions ranged from 191 in the District of Columbia to 236 in Massachusetts.

Mathematics

Results from NAEP long-term trend assessments of mathematics proficiency indicate that the scores of 9- and 13-year-old students were higher in 2004 than in 1973 (table 125). For White, Black, and Hispanic 9-, 13-, and 17-year-olds, average mathematics scale scores were higher in 2004 than in 1973. The 2007 main NAEP assessment of states found that mathematics proficiency varied among public school eighth-graders in participating jurisdictions (the 50 states, the Department of Defense overseas and domestic schools, and the District of Columbia) (table 129). Overall, 70 percent of these eighth-grade students performed at or above the Basic level in mathematics, and 31 percent performed at or above the Proficient level.

International Comparisons

In 2003, the performance of U.S. 15-year-olds in mathematics literacy and problem solving, as measured by the Program for International Student Assessment (PISA), was lower than the average performance for most Organization for Economic Cooperation and Development (OECD) countries (table 389). Along with the scale scores, PISA also used seven proficiency levels (below level 1 and levels 1 through 6, with level 6 being the highest level of proficiency) to describe student performance in mathematics literacy (table 390). In mathematics literacy, the United States had greater percentages of students below level 1 and at levels 1 and 2 than the OECD average percentages. The United States also had lower percentages of students at levels 4, 5, and 6 than the OECD average percentages.

High School Graduates and Dropouts

About 3,303,000 high school students are expected to graduate during the 2007–08 school year (table 100), including 2,988,000 public school graduates and 315,000 private school graduates. High school graduates include only recipients of diplomas, not recipients of equivalency credentials. The 2007–08 record number of high school graduates exceeds the former records of 2005–06 and 2006-07, as well as the high point during the baby boom era in 1976–77, when 3,152,000 students earned diplomas.

The number of General Educational Development (GED) credentials issued rose from 330,000 in 1977 to 487,000 in 2000 (table 104). A record number of 648,000 GED credentials were issued in 2001. In that year, candidates who had already taken any of the five tests in the GED test battery had to complete the entire battery before the end of the year or else take all five tests over again. The reason is that a new GED test series was introduced in 2002. In the same year, data collection procedures changed, with data from the states on the number of credentials issued being replaced by test data from individual test-takers. In 2005, 424,000 passed the GED tests, up from 330,000 in 2002, the first year of the new test series.1

In 2004–05, 74.7 percent of public high school students graduated on time—that is, received a diploma 4 years after beginning their freshman year (table 102). This 2004–05 percentage is higher than the percentage for 1994–95 (71.8 percent), but similar to the percentage for 1976–77 (74.4 percent). The status dropout rate—that is, the percentage of 16- to 24-year-olds who are not enrolled in school and have
received neither a diploma nor an equivalency credential—declined from 14 percent in 1977 to 9 percent in 2006 (table 105).

Educational Technology

The number of computers in public schools has increased. In 2005, the average public school contained 154 instructional computers, compared to 90 in 1998 (table 413). One important technological advance that has come to classrooms following the introduction of computers has been connections to the Internet. The percentage of instructional rooms with access to the Internet increased from 51 percent in 1998 to 94 percent in 2005 (figure 29). Nearly all schools had access to the Internet in 2005 (table 413).

Postsecondary Education

College Enrollment

College enrollment hit a projected record level of 18.0 million in fall 2007. College enrollment is expected to continue setting new records throughout the fall 2008 through fall 2016 period (table 3). Between fall 2007 and fall 2016, enrollment is expected to increase by 14 percent. Despite decreases in the traditional college age population during the late 1980s and early 1990s, total enrollment increased during this period (tables 7, 15, 181, and 192). The traditional college-age population (18 to 24 years old) rose 15 percent between 1995 and 2005, which was reflected by an increase of 23 percent in college enrollment. Between 1995 and 2005, the number of full time students increased by 33 percent compared to a 9 percent increase in part-time students (table 179). During the same time period, the number of males enrolled increased 18 percent, while the number of females enrolled increased 27 percent.

Faculty and Staff

In the fall of 2005, degree-granting institutions—defined as postsecondary institutions that grant an associate’s or higher degree and are eligible for Title IV federal financial aid programs—employed 1.3 million faculty members, including 0.7 million full-time and 0.6 million part-time faculty (table 235). About 19 percent of full-time faculty taught 15 or more hours per week, compared with 8 percent of part-time faculty (tables 240 and 241). About 9 percent of full-time faculty taught 150 or more students, compared with 2 percent of part-time faculty.

Postsecondary Degrees

During the 2007–08 academic year, postsecondary degrees are projected to number 699,000 associate’s degrees; 1,544,000 bachelor’s degrees; 631,000 master’s degrees; 89,300 first-professional degrees; and 55,300 doctor’s degrees (table 258).

Educational Attainment

The U.S. Census Bureau collects annual statistics on the educational attainment of the population. Between 1997 and 2007, the percentage of the adult population 25 years of age and over who had completed high school rose from 82 percent to 86 percent, and the percentage of adults with a bachelor's degree increased from 24 percent to 29 percent (table 8). High school completers include those people who graduated from high school with a diploma, as well as those who completed high school through equivalency programs. The percentage of young adults (25- to 29-year-olds) who had completed high school in 2007 (87 percent) was about the same as it was in 1997 (87 percent). Also, the percentage of young adults who had completed a bachelor’s degree in 2007 (30 percent) was not substantively different from the percentage in 1997 (28 percent).

Education Expenditures

Expenditures for public and private education, from prekindergarten through graduate school (excluding postsecondary schools not awarding associate’s or higher degrees), are estimated at $972 billion for 2006–07 (table 25). Expenditures
of elementary and secondary schools are expected to total $599 billion, while those of degree-granting postsecondary institutions are expected to total $373 billion. Total expenditures for education are expected to amount to 7.4 percent of the gross domestic product in 2006–07, about 0.5 percentage points higher than in 1996–97.

Interpreting Statistics

Readers should be aware of the limitations of statistics. These limitations vary with the exact nature of a particular survey. For example, estimates based on a sample of institutions will differ somewhat from the figures that would have been obtained if a complete census had been taken using the same survey procedures. Standard errors are available for sample survey data appearing in this report. In most cases, standard errors for all items appear in the printed table. In some cases, only standard errors for key items appear in the printed table. Standard errors that do not appear in the tables are available from NCES upon request. Although some of the surveys conducted by NCES are census or universe surveys (which attempt to collect information from all potential respondents), all surveys are subject to design, reporting, and processing errors and errors due to nonresponse. Differences in sampling, data collection procedures, coverage of target population, timing, phrasing of questions, scope of nonresponse, interviewer training, data processing, coding, and so forth mean that the results from the different sources may not be strictly comparable. More information on survey methodologies can be found in the Guide to Sources (appendix A).

Estimates presented in the text and figures are rounded from original estimates, not from a series of roundings. Percentages in the text are rounded to whole numbers, while ratios and percentage distributions are normally presented to one decimal place, where applicable.

Unless otherwise noted, all data in this report are for the 50 states and the District of Columbia. Unless otherwise noted, all financial data are in current dollars, meaning not adjusted for changes in the purchasing power of the dollar due to inflation. Price indexes for inflation adjustments can be found in table 31.

Common data elements are collected in different ways in different surveys. Since the Digest relies on a number of data sources, there are discrepancies in definitions and data across tables in the volume. For example, several different surveys collect data on public school enrollment, and while similar, the estimates are not identical. The definitions of racial/ethnic groups also differ across surveys, particularly with respect to whether Hispanic origin is considered an ethnic group regardless of race, or counted separately as a racial/ethnic group. Individual tables note the definitions used in the given studies.

All statements cited in the text about differences between two or more groups or changes over time were tested for statistical significance and are statistically significant at the .05 level. Various test procedures were used, depending on the nature of the statement tested. The most commonly used test procedures were t tests, equivalence tests, and linear trend tests. Equivalence tests were used to determine whether two statistics are substantively equivalent or substantively different. This was accomplished by using a hypothesis test to determine whether the confidence interval of the difference between sample estimates is substantively significant (i.e., greater or less than a preset substantively important difference). In most cases involving percentages, a difference of 3.0 was used to determine substantive equivalence or difference. In some comparisons involving only very small percentages, a lower difference was used. In cases involving only relatively large values, a larger difference was used, such as $1,000 in the case of annual salaries. Linear trend tests were conducted by evaluating the significance of the slope of a simple regression of the data over time, and a t test comparing the end points.

1 Information on changes in GED test series and reporting is based on the 2003 edition of Who Passed the GED Tests?, by the GED Testing Service of the American Council on Education, as well as communication with staff of the GED Testing Service.