Electronic and Electrical Troubleshooting Outline of Instruction

Course Information

Organization	Monroe County Community College, Applied Science and Engineering Technology
Developers	Thomas Harrill
Development Date	8/26/2009
Course Number	ELEC-200
Potential Hours of Instruction	90

Description

This course introduces the logic and concepts of a systematic approach to troubleshooting and repair of a variety of electrical and electronic equipment. Emphasis on efficiency and time management in the troubleshooting process will be highlighted.

Major Units:

- 1. Introduction to Troubleshooting
- 2. Electrical and Electronics Theory Review
- 3. Instrument Usage and Measurements
- 4. Troubleshooting Relays and Motor Starters
- 5. Troubleshooting Motor Electrical and Mechanical Problems
- 6. Troubleshooting Power Distribution and Quality
- 7. Troubleshooting Motor Controls and Drives
- 8. Troubleshooting Lighting Circuits
- 9. Troubleshooting Solenoids and Heating Elements
- 10. Troubleshooting Mechanical and Solid State Switches
- 11. Troubleshooting Diodes, Transistors, Thyristors and Integrated Circuits
- 12. Troubleshooting Programmable Controllers
- 13. Troubleshooting Alternative Energy Systems
- 14. Prevententive Maintenance

Types of Instruction

Instruction Type	Contact Hours	Credits
Classroom Presentation	30	
On-Campus Lab	60	

Textbooks

Mazur and Proctor. Troubleshooting Electrical/Electronic Systems.

Learner Supplies

Proto-board.

Scientific Calculator.

Optional: Needle-Nose pliers, Diagonal Cutters and Wire Strippers.

Prerequisites

ELEC 132 (Electronics 1)

Exit Learning Outcomes

Program Outcomes

- A. Develop and Demonstrate Problem Solving Skills.
- B. Develop a willingness to learn independently.
- C. Develop and demonstrate effective wiring and laboratory skills.
- D. Demonstrate Equipment/Instrumentation Competence.
- E. Develop and demonstrate Technical Documentation/Lab Report writing skills and the ability to comprehend Technical Documentation including Schematic Diagrams.
- F. Value Safety Training, Safe Work Practices and acknowledge Safety Standards.
- G. Demonstrate a thorough understanding of DC and AC theory and operating concepts.
- H. Design, Construct, and Troubleshoot AC and DC Motor Control Circuits and an demonstrate an understanding of process control.
- I. Utilize Virtual Instrumentation, Data Acquisition (LabView), CAI, Schematic Capture and Test and Applications software packages to refine skills and to analyze and design various electronic circuits.

General Education Outcomes

- A. Apply mathematical approaches to the interpretation of numerical information
- B. Use computer technology to communicate information
- C. Communicate ideas in writing using the rules of standard English
- D. Apply mathematical approaches to the analysis of numerical information
- E. Demonstrate an understanding of the process of scientific inquiry
- F. Use computer technology to retrieve information

Course Outcomes

- 1. Indentify/Recognize Troubleshooting Levels, Logic and Procedure
- 2. Utilize Ohm's Law to form expectations to assist in troubleshooting circuits
- 3. Utilize Instrumentation to diagnose a circuit fault
- 4. Demonstrate/Practice Troubleshooting Relay and Motor starter faults
- 5. Demonstrate/Practice Troubleshooting Motor Mechanical and Electrical faults
- 6. Demonstrate/Practice Troubleshooting Power Distribution and Power Quality faults
- 7. Demonstrate/Practice Troubleshooting Motor Control and Drive faults
- 8. Demonstrate/Practice Troubleshooting Lighting circuit faults
- 9. Demonstrate/Practice Troubleshooting Solenoid, Heating Element and Switch faults
- 10. Demonstrate/Practice Testing Diodes, Transistors and Thyristor faults
- 11. Demonstrate/Practice Troubleshooting Programmable Logic Controller faults
- 12. Demonstrate/Practice Troubleshooting Alternative Energy system faults
- 13. Indentify/Recognize Preventitive Maintenance Procedures