Instrumentation Outline of Instruction

Course Information

Project Type	Course	
Organization	Monroe County Community College, Applied Science and Engineering Technology	
Developers	Mike Taylor and Mike Taylor	
Development Date	1/31/2012	
Course Number	ELEC 136	
Instructional Level	Associate Degree	
Instructional Area	Electronics and Computer Technology	
Division	Industrial Technology	
Potential Hours of Instruction	60	
Total Credits	3	

Description

Measuring and Test equipment (M&TE) is a vital part of almost all industry. This course examines the characteristics and limitations of common instruments. A major focus is on calibration techniques and standards for such equipment. Topics covered include safety, lab techniques, AC and DC meters, digital multimeters, bridges, signal-processing circuits, and typical instruments for measuring parameters such as Torque, Pressure, Temperature, Dimensional, Mass, Force, and various others.

Major Units

- 1.Introduction to Instrumentation & Metrology
- 2.Metrology & Standards Organizations
- 3.Instrument Usage and Measurements, Measurement Theory
- 4.Meter circuits and loading
- 5.Meter frequency response and capacitive loading
- 6. Transducer types and characteristics
- 7.Bridge circuits and their applications

8. Theory and Calibration of Force, Torque, Pressure, Temperature, Electronic, Dimensional, and other physical measurement and Test equipment

Types of Instruction		
Instruction Type	Contact Hours	Credits
Classroom Presentation	45	3

Textbooks

Jay L. Bucher. The Metrology Handbook .

Learner Supplies

Scientific Calculator. Protoboard.

Prerequisites

ELEC-125

Exit Learning Outcomes

General Education Outcomes

- A. Communicate information in writing using the rules of standard English
- B. Apply mathematical approaches to the analysis of numerical information
- C. Demonstrate an understanding of the process of scientific inquiry
- D. Use computer technology to communicate information

Course Outcomes

- 1. Design and construct a dc voltmeter or ammeter of any specified range from a microammeter
- 2. Given a voltage-divider diagram, a signal frequency, and a meter type (VOM, DVM, or oscilloscope), determine whether meter loading will invalidate the reading
- 3. Determine the voltage across the components of a Wheatstone-bridge circuit
- 4. Select and apply measurement and test equipment to measure temperature, pressure, force, torque, mass, dimensional properties, electronic properties, and other physical properties.
- 5. Identify and have a general familiarity with gas, liquid, and ultrasonic liquid flow, humidity, dew point, luminous intensity, sound level, vibration, time and frequency, relative density, hardness testing, altitude, and submarine depth M&TE.
- 6. Convert between various engineering units of typical measurement parameters and determine whether each of these is a fundamental unit or a derived unit
- 7. Calibrate and verify operation of measurement and test equipment for temperature, pressure, force, torque, mass, dimensional properties, electronic properties, and other physical properties.
- 8. Explain primary and secondary measurement standards, organizations responsible for maintaining such standards, and how such standards are used for traceability of equipment calibration.
- 9. Apply various software packages to assist in the calibration process.
- 10. Calculate and compare accuracies by utilizing %IR, %FS, PPM and a combination of these methods of describing M&TE, and describe how accuracy is related to measurement uncertainty